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1.1 Introduction

1.1.1 Engineering and Modeling

Engineering designs and constructs all kinds of devices, equipment, technical systems, large production 

units or public works aiming to improve the quality of human life and to raise the living standards. 

Engineering also designs and construct all tools, machinery and methods necessary for these tasks. To 

accomplish its mission, engineering makes use of all the great results of science and technology, along 

with the innovative thinking of engineers all over the world. he outcomes of all this efort comprise the 

so-called ‘man-made’ or ‘artiicial’ component of the world that surrounds us, as opposed to the ‘natural’ 

component (earth, fauna, lora, human beings and climate). Now-a-days, engineering works cover all 

dimensions from micro- and nano- to giga- and terra- scales and expand their range of activities to the 

space and faraway planets and stars.

Textiles is one of the most ancient and most close to the human being engineering ields: it goes back 

to ancient Egypt, where the Pharaohs wore elaborate hand gloves made from cotton threads, to ancient 

China and probably even further back in human prehistory. For thousands of years, textiles have been 

clothing the human body for protection and survival, for distinction of hierarchy, role and responsibility, 

for celebration or mourning, for the joy of life and the sorrow of death.

Apart from clothing, yarns and fabrics have found millions of other uses, ranging from traditional 

investment of interiors (tents, furniture, buildings, cars, airplanes), sails for vessels or media for stocking 

goods to the most exciting modern uses (aesthetics and fashion, healthcare, military and safety) and 

further on to the smart, multi-functional textiles of the modern era, equipped with sensors and ‘gited’ 

with artiicial intelligence so as to respond to our needs or feelings! 
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A major tool in the efort of scientists and engineers to understand nature and its laws and exploit this 

knowledge to construct better artiicial devices and systems has been the analysis and modeling of 

systems. his is achieved by means of mathematical and physical sciences, at various levels of abstraction 

and at various levels of approximation as well. Models of real life systems and of their functionality have 

evolved from early forms of architectural miniatures of landscapes, buildings, bridges, airports, factories, 

vehicles, etc. made of clay, cork, plastic or other materials, to the modern, electronic, three-dimensional 

models created by sophisticated computer graphics sotware. 

It is important to keep in mind that it is the mathematics relations, simple or complex, lying behind all 

such sotware, that govern the drawing of the geometrical forms and shapes, texture and lighting efects 

that produce the exquisite, photo-realistic models on a computer screen. In turn, these mathematics 

relations have been formulated by scientists on the basis of analysis of the real system they had carried 

out, in an attempt to approximate its functionality by a set of relations of the minimum complexity 

possible; yet, it should adequately resemble the real system.

Although intuitively an accurate and detailed model is expected to be more useful, oten an approximate, 

simpliied model is to be preferred, as it lends itself to immediate use while it retains the key characteristics 

of the system it models. It is parsimonious, in the sense that it is not overloaded with details that cannot 

be appreciated by the user of the model. Still, it provides us with a clear-cut view of the real-world 

prototype it models.
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What is the practical value of a model? It has to do with prediction. A model helps the designer predict 

the behavior, static or dynamic, of the device or system being designed, before taking the cost and 

dedicating the efort to actually construct it. his results in considerable savings of efort and cost. Loops 

of testing, corrections and changes for the improvement of the initial design are common practice in the 

design and construction of products or services. Fortunately, models allow us to loop through correction 

steps at a considerably low level of cost and take the construction cost for the real-world system only 

ater the design has been inalized.

In textiles engineering, models built to describe the properties, characteristic measures and dynamic 

behavior of yarns, fabrics and inal products have been valuable design tools. Of great practical value 

are models that predict the properties and behavior of the produced fabric based on the properties of 

the yarns and weaving pattern employed.

1.1.2 Is this a deterministic or a stochastic world?

In their strife to obtain ‘good’ models, scientists have gradually shited from the deterministic to the so-

called stochastic approach. he diference between the two terms is essential to the way the world around 

us is perceived and interpreted by humans; in fact, expressed under various forms, the dilemma whether 

this is a deterministic or a stochastic world has long been discussed and argued by science, philosophy 

and religion. Leaving that aspect of the discussion to the knowledgeable, engineering proceeds to exploit 

the best of the two approaches, selecting per case the one that produces adequately good models for the 

problem at hand.

•	 he deterministic approach heeds that the world around us, its natural and artiicial 

components alike, can be fully and exactly described by mathematics relations. At an 

increased level of complexity – oten prohibitively high for all practical purposes – equations 

and inequalities, linear or nonlinear, can describe in full detail all that happens around us, 

including laws of nature, behavior of beings and functionalities of constructed, artiicial 

systems. Scientists formulate the sets of such relations by study and analysis of the real-

world systems and phenomena; next, engineers simplify them enough to be manageable 

by contemporary mathematics and sotware – but not too much, so as to retain the 

essential features of the real-world prototype they model. he level of approximation in 

the description of systems and phenomena thus obtained is varying and it is decided per 

occasion by the engineers.
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•	 he stochastic approach heeds that there exist factors afecting behaviors and functionalities 

of beings and systems that cannot be fully described by equations, as they are essentially 

random in nature. Noise, either acoustic or electronic, mechanical friction, the behavior 

of the atmosphere as transport media for wireless communications are but a few typical 

examples of factors that render a system random or stochastic. Laws of nature are no 

exception, either. he set of all possible outcomes or values of a random factor form an 

ensemble; the random factor is described by measures averaged over the ensemble of all 

its possible forms, rather than with exact equations per case. Stochastic equations are thus 

obtained to describe or model stochastic systems and the notion of probability (that one 

of all possible outcomes contained in the ensemble will eventually occur at a given time) 

comes into picture.

Major engineering tasks such as detection of events, pattern recognition and object classiication receive 

stochastic answers under the stochastic approach. A certain fabric law probably (or with probability p %) 

is caused by a certain machinery fault, a certain fabric is more likely (higher probability) to belong to class 

A than to class B, or it will exhibit a given property with probability p %. In contrast, the deterministic 

approach provides ‘binary’ or ‘crisp’ answers of the type: belongs / does not belong, exists / does not 

exist, will exhibit / will not exhibit, etc. Both types of answers may be correct or wrong; the stochastic 

approach, however, is closer to the way a human expert would make and express decisions.

1.1.3 Is this a linear or a non-linear world?

his is clearly a non-linear world, all scientists answer in concordance. Non-linearity is the rule without 

exception in nature and all natural factors: materials, constructions, beings and behaviors. Linearity 

is an abstraction adopted by our perception in order to simplify nature at a level where we would be 

able to comprehend, describe and interpret it. A straight line or a perfect plane, as these are deined in 

Euclidean geometry, are not to be seen anywhere in nature; yet, they are successful simpliications or 

approximations of a tight string or a calm water or other liquid media level. 

Inasmuch as they bear a correspondence to the real-world objects, such approximations are valuable help 

for common people and scientists alike: the former use linear approximations to cope with everyday life 

problems and calculations of distance, area, value, time, etc., while the later exploit them to express and 

test theories and communicate results. Scientists have another good reason to seek linear approximations: 

linear mathematics have traditionally been far more advanced than non-linear mathematics, the later 

having progressed to a level of practical interest only recently. Tools and methods at the avail of scientists 

and engineers have been linear in their vast majority, prompting them to attempt to ‘linearize’ essentially 

non-linear problems.
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It can be argued that linearity is a matter of ‘distance’ one takes from the object or behavior under study. 

Indeed, if one ‘zooms in’ to the surface of an object made of a given material, irregularities, aberrations, 

laws and luctuations – inherent to all materials – will appear; upon ‘zooming out’ enough, laws 

disappear and the ideal straight line or plane view prevails. In fact, there are areas or parts or aspects 

of the object under study where the linear approximation is ‘reasonable’, i.e. it lies at a smaller distance 

or ‘leaves small error’ to the real, non-linear nature of the object, and other parts where such condition 

does not hold. Diferent linear approximations may be required at diferent parts of the object. A sigmoid 

line, for example, may be crudely approximated by three diferent straight lines as in Figure 1.1; this is 

a piece-wise linear approximation. hese three lines constitute a linear model of the actual sigmoid line. 

Figure 1.1: The non-linear sigmoid function (red curve) is approximated by three straight lines (blue lines).  

The horizontal line at y = 0 is a good approximation for x < -2; the ‘diagonal’ line for -2 < x < 2; the horizontal line at y = 1 for x > 2.
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It may be argued that a linear approximation by ive diferent lines would be preferable, as it would 

leave smaller error; however, this is a more complex model that requires more computations. In general, 

there is a trade-of between approximation (model) complexity and approximation error, calling for a 

balanced decision. 

When a real-world problem is cast into a linear model via a linear approximation procedure, linear 

mathematics (typically coded into a sotware tool) are employed to yield the solution, which is tested at 

a simulation level and the model is corrected accordingly. hese steps loop until some criterion is met. 

he inal solution is then materialized by the construction of the actual object. Yarn, tissue, fabric and 

inal textile product design and construction are no exception to this approach.

1.2 Artiicial Neural Networks (ANNs)

1.2.1 Is it all hype?

A part of it is – was, rather – hype, but certainly not all, scientists reply today. here’s true value in 

them; only, one has to know what to expect. Only a couple of decades ago, excitement over the merits 

of these new tools drove expectations too high: they were claimed to be universal problem solvers. 

Interestingly enough, now that the dust has cleared, they still hold a title of universality – this time by 

strict mathematical proof: they are universal function approximators. If only for this property, ANNs 

deserve a formal introduction. In light of the discussion held in the previous section, 

Artiicial Neural Networks are non-linear, stochastic mathematical models.

1.2.2 ANN types and structures

hey are inspired by – and named ater – the neural system of biological organizations, a network 

built from neurons, axons, dendrites and connection points know as synapses, as neuroscience explains. 

hrough this network, information lows in the form of electric signals from the peripheral sensors to the 

brain (sensing direction) and control orders low from the brain to the peripherals (actuating direction). 

Similarities do not hold any further, however; the nervous system and the brain are far too complex to 

be fully understood or modeled by science as yet, while ANNs are governed by simple – even if non-

linear – relations.

Artiicial, as opposed to biological, neural networks are built of nodes called neurons or processing 

elements (PEs) which are interconnected by links bearing weights. Each node receives a vector of 

inputs, processes them non-linearly in the general case and produces a single output. Figure 1.2 shows 

a simpliied example of a node that accepts a vector of three inputs [x
0
, x

1
, x

2
], weights them by [w

0
, w

1
, 

w
2
], respectively, processes their sum z by the non-linear ‘activation function’ (a sigmoid, a hard-limiter 

or other) to produce a single output y.
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Figure 1.2: A simpliied example of a node or PE or neuron of an ANN: input x are weighted by weights w.  

The weighted average z is processed by the non-linear activation function to produce output z.

Nodes are organized into layers arrayed into a sequence; output values of a layer serve as input values to 

the next layer. In general, an ANN is a multi-layer construction. In an ANN of L layers, the irst (L-1) 

layers are called hidden while the last, L-th layer is the output layer. Figure 1.3 shows a simpliied example 

of an ANN with three layers of nodes (input, hidden, output). 

Figure 1.3: A simpliied example of a three-layer ANN (input, hidden, output). Input vectors are three-dimensional ([x
1
, x

2
, x

3
]).  

All inputs are ‘fed’ to all input layer nodes. All nodes of a layer are connected to all nodes of the next layer.  

Weights at connections are not shown for simplicity.

It is interesting that networks with as little as only two layers (one hidden and one output) can solve 

really complex problems. In fact, it has been proved that a two-layered network, appropriately structured 

and trained, can approximate arbitrarily well any function that has a inite number of discontinuities, 

thus gaining the title of universal approximators for the ANN family. How is this achieved? What other 

kinds of problems can ANNs solve?

Input data, typically in the form of vectors of measurements X, are introduced to the irst layer. Data 

proceed through – while being processed by – the ANN, from layer to layer, to the output layer, where 

they form the vector of output values or (stochastic) decisions Y. Data low between successive layers can 

be unidirectional (from a given layer to the next one in sequence) in a feedforward network or bidirectional 

(proceeding forward to the next layer and looping back to the previous one) in a feedback network. 
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Although more sophisticated forms exist, the typical processing relation performed by the nodes of 

layer L
i
, in a feedforward network, in order to transforms the data vector X

i
 into the data vector X

i+1
, is 

a weighted average passed through a non-linear function, formulated as 

X
i+1 

= f
i
 (a

i
 X

i
 + b

i
). (1.1)

Here f
i
(·) denotes the non-linear transfer function of layer L

i
, common to all nodes in this layer but 

possibly varying across diferent layers. he log-sigmoid, the hard-limiter and the hyperbolic tangent are 

typical non-linear function examples. he linear option is retained for f
i
(·) if a linear layer is necessary 

for solving a given problem. {a
i
} denotes the vector of weights and {b

i
} the vectors of additive constants 

(ofsets or biases) that render the linear combination aine. 

Network ‘architecture’ (i.e., the number of layers, number of nodes per layer, possible connections among 

nodes and layers, weights and non-linear functions employed) complexity is commensurate with the 

complexity of the system the ANN is asked to model. A variety of diferent architectures have been 

proposed and successfully implemented so far. Perceptrons, multilayer perceptrons, feedforward and 

feedback, generalized regression, associative, hebbian learning, radial basis, linear vector quantizer and 

many other network types are available for testing and use. Selection of the best architecture is empirical; 

rules of thumb rather than closed form solutions are available.
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1.2.3 ANN functionalities

In a feedforward network, input data vector X undergoes a series of L such transformations that change 

both the values and the number of the vector components, until it is handed out as output vector Y:

If viewed as one global system, the ANN structure proposes a relation between input vector X and 

output vector Y, of the form 

Y = F(X), (1.2)

where F(·) represents the nested application of the f
i
(·)s across successive layers L

1
 to L

L
:

Y = F(X) = f
L
(X

L
) = f

L
(f

L-1
(X

L-1
)) =  · · · = f

L
(·f

L-1
( f

L-2
(···(f

2
(f

1
(X

1
)))···))). (1.3)

Although each f
i
(·) is a simple function or model, the ‘cumulative’ efect across all layers in a multi-layered 

network produces rather complex functions. What is the kind of problems that such functions – and, 

consequently, ANNs can address successfully? hey can be grouped under three major categories: 

1. Function approximation, including system identiication, modeling and prediction,

2. Pattern classiication, including pattern recognition and decision making, and

3. Data processing, including clustering, iltering and compression.

It is worth to note that under these three categories falls a considerable majority of engineering problems, 

either directly or ater suitable manipulation. How are these demanding tasks accomplished by an 

ANN? It has to do with the adaptation property of ANNs. It would be a rather simple task to build up 

an ANN model and code it into sotware, if it weren’t for the fact that it is an adaptive model: weights 

{a
i
} and biases {b

i
} are repeatedly adjusted to best suit the data at hand, via an algorithm that is typically 

iterative, until an optimality criterion is met. A variety of iterative algorithms have been proposed so far; 

diferent algorithms are better suited to diferent types of problems. What is crucial here is the fact that 

these iterative algorithms have been proved to converge to a solution given an adequate set of sample 

data for training. 

he development of an ANN approach in order to solve a given engineering problem proceeds in three 

phases: (a) initial selection of the ANN type, architecture and training algorithm, (b) training phase 

and (c) testing phase. 
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•	 During the training phase the ANN ‘learns’ the rules that govern the system under 

investigation through a set of examples (the training set) presented to its input; each input 

vector within the training set is associate with a correct output (answer). he iterative 

algorithm employed to ‘train’ the ANN adapts its weights iteratively, based on the diference 

between actual and correct output (error). Weights are adjusted until error is minimized; 

upon convergence the training phase ends.

•	 During the testing phase, which represents the actual ANN long-term functionality of 

interest, unknown examples are presented to its input; using the weight values adjusted 

through training, the ANN processes each unknown input and produces the corresponding 

output. his output value may represent things as diferent as class membership, probability 

of an event, estimated value of a parameter, etc. Correct outputs produced in response to 

unknown inputs prove the ANN’s ability to ‘generalize’, i.e. to extract ‘knowledge’ or ‘rules’ 

from the set of examples that are then applied to unknown cases. he ‘generalization’ 

property ultimately shows that 

 - the ANN type, architecture and training algorithm chosen are suitable for the 

problem at hand; and 

 - the training set used was ‘rich’ (representative of all possible cases) enough to 

guarantee successful operation during testing phase. 

What if ‘generalization’ is not achieved? his means that either the training set was not rich enough or 

the ANN selection was not successful (in total or in its parametrization). In the former case a diferent 

approach may be more suitable than ANNs since more data are not oten easy to acquire; in the latter 

case the process loops back to redesign the net or its parametrization or the training algorithm and to 

go through the training phase once more.

All in all, the ANN approach is both complex and sensitive; it is worth taking the pain to resort to it 

only ater straightforward, linear methods have failed to address the problem at hand or when there is 

strong evidence of non-linearity in the data, coming from prior information.

1.3 ANNs in textiles engineering

Artiicial Neural Networks, in both their functions as approximators and as classiiers, have found use 

and successful application in a variety of problems arising in textiles engineering. hey have been used to 

‘estimate’ values of yarn-, iber- or fabric-related properties on the basis of simple, measurable structural 

parameters, before the actual construction or fabrication step takes place. hey have been used to detect 

failures, faults, or other events of interest from signals recorded or images taken during the yarn, iber 

of fabric production process. It can be safely stated that within the textiles engineering area, ANNs have 

been exploited in all classic engineering problems, such as detection, classiication, modeling, estimation 

and pattern analysis. In the following paragraphs, two such examples are outlined.
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1.3.1  A function approximation problem example: prediction of fabric air permeability

Air permeability of fabrics is an important property in textiles because it determines both the comfort 

of the inal product (garment) and the behavior of the fabric during the vacuum drying phase of its 

processing. herefore, prediction of the air permeability of a fabric before its actual construction is 

a task of practical interest. Air permeability is known to depend on the material of the yarn and the 

micro-structural parameters of the fabric, through rather complex, non-linear relations. Porosity of 

the fabric ofers a path to calculate air permeability; unfortunately, there is no standardized method to 

calculate or directly measure porosity, especially for dense fabrics. On the other hand, micro-structural 

parameters of the fabric such as warp and wet densities or mass per unit area of fabric can be measured 

with adequate accuracy. 

Linear multiple regression analysis, carried out in order to investigate the degree of linearity of the 

relation among air permeability and the three aforementioned micro-structural parameters, reveals that 

an 85% of the variability in air permeability values can be linearly explained by the variability in the three 

parameters while the rest 15% calls for a non-linear approach. In that case an ANN can be designed 

and trained to predict air permeability values (output) from input vectors that contain micro-structural 

parameter measurement data. 
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A Generalized Regression Neural Network (GRNN) is employed for this task. his is a member of the 

Radial Basis Function ANNs that are known to be universal approximators appropriate for problems 

that present radial symmetry of the data space, as is the case at hand. Another advantage is that the 

GRNN training iterative algorithms converge rapidly. A GRNN contains two layers of neurons, each 

consisting of N neurons, where N is the cardinality of the training set (number of the input - output 

pairs available). he irst (hidden) layer consists of radial basis function (RBF) neurons while the second 

(output) layer consists of linear neurons of special structure, allowing for real-valued outputs. A single, 

real-valued output value is employed here; it is the air permeability value predicted by the ANN on the 

basis of the three micro-structural parameters of the fabric under design. Indeed, ater training with 

a set including various types of fabrics, the speciic ANN exhibits satisfactory generalization, meaning 

that it can accurately predict air permeability values of fabrics not included in its training set – yet, of 

micro-structural parameters within the same range as those in the training set. 

Figure 1.4 shows prediction results on a set of fabrics of six (6) diferent knitting patterns across ive (5) 

diferent parameters yielding thirty (30) diferent fabric sample cases. Twenty four (24) samples are used 

for training and six (6) for testing. Air permeability values are on the vertical axis while fabric sample 

case index is on the horizontal axis. Upper plot shows excellent agreement between real (red stars) and 

ANN predicted (blue circles) air permeability values across the 24 cases of the training set, here used 

as the testing set. Lower plot shows the corresponding good agreement for the 6 cases of the testing set 

that are not used for training. 

Calculation of the average error (diference between real and estimated air permeability output value) across 

diferent samples reveals that only 3.3% of the total variability in the air permeability value is not ‘explained’ by 

the non-linear, ANN approach, as compared to the 15% of variability let ‘unexplained’ by the linear method.

Figure 1.4: Air permeability real (red stars) and ANN predicted (blue circles) values for 30 fabric samples of diferent micro-structural 

parameters. Upper plot: training set used as testing set (24 cases). Lower plot: testing set unknown (6 cases).
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In a feedforward network, input data vector X undergoes a series of L such transformations that change 

both the values and the number of the vector components, until it is handed out as output vector Y:

1.3.2  A classiication problem example: classiication of faults in circular knitting machines

he automated supervision of the knitting process is of high interest so as to avoid (i) the waste of material 

and (ii) the increase of production cost. Knitted fabrics produced by circular knitting machines that 

involve numerous moving parts may come out defective as a result of failure of the machine; depending 

on the type of failure, the product may be of reduced quality and price or altogether unsuitable for 

further use. Automated detection and classiication of the various types of knitting machine failures is 

therefore of great practical interest. Indeed, if issued in real time, an alarm or call for technical support 

and repair will result in considerable time and cost savings. Yarn tension signal is a quantity that can be 

monitored for early machine failure detection. Figure 1.5 shows a yarn tension signal recording under 

normal (upper plot) and abnormal (lower plot) operating conditions of the knitting machine.

Correlation the diferent types of mechanical failures with the possible corresponding diferences in 

the respective tension signals would allow for the classiication of the machine fault type based on the 

classiication of the event present in the recorded tension signal. his is a complex and demanding task 

for human experts; it is therefore expected to be demanding under automated performance as well. he 

non-linear ANN approach is investigated for the detection and the classiication tasks. 

Figure 1.5: Yarn tension signal recording under normal (upper plot) and abnormal  

(lower plot – needle without a hook) knitting machine operating conditions.
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As a irst step, a set of ‘features’ or characteristic quantities have to be extracted from the signal. his step 

reduces the dimensionality of the problem from the dimension of the recorded signal length down to 

that of the number ‘features’ selected and extracted. hese features, however, should retain and convey 

all information present in the signal that will subsequently allow for the classiication of the signals into 

diferent classes. Taking into account the non-stationary nature of the yarn tension signal, a set of time-

frequency analysis features are selected; these are based on the (pseudo-) Wigner-Ville Distribution 

(WVD) of the yarn tension signal. It is a two dimensional distribution of the signal power across time 

and frequency axes, that extends the notion of Fourier Transform spectrum of stationary signals to cover 

the case of non-stationary signals. Figure 1.6 shows this two dimensional WVD feature for the yarn 

tension signal cases of Figure 1.5 (let: normal, right: needle without a hook).

Figure 1.6: Two dimensional Wigner-Ville Distribution feature computed from the yarn tension signal of Figure 1.5  

(left: normal operation, right: needle without a hook).

he plots in Figure 1.6 are contours obtained by cross-sectioning the two dimensional, landscape-like 

WVD characteristic quantities. Horizontal axis is frequency while vertical axis is time, centered on the 

failure time point of igure 5 (lower plot, n=550). Color depicts signal power at a given time-frequency 

neighborhood, scale increasing from blue to red. Ater suitable reduction back to one dimension, feature 

vectors are obtained and presented to a Learning Vector Quantizer (LVQ) type of ANN classiier. he 

LVQ ANN architecture is selected for its ability to handle input vectors of high dimensionality, as is the 

case at hand; yet, at the cost of longer training iterations. It is a two-layered architecture with a irst, 

competitive layer that classiies inputs in sub-classes and a second, linear layer that groups sub-classes 

into target classes. he target class index is the single output.

he LVQ designed for this problem is trained to classify input vectors into (a) two and (b) three 

distinct classes of machine failures. Correct classiication scores are varying between 75% and 90%, 

case-dependent. hese are satisfactory results given the complexity of the task and the fact that they 

are obtained directly, without any ANN architectural parameter trimming. However, they reveal the 

sensitivity and the amount of computational efort required by the ANN approach.
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1.4 Discussion

Non-linear methods have been attracting research interest in complex engineering problems where 

the linear approach is not adequate. Artiicial Neural networks are but an example; Fuzzy Logic, 

Support Vector Machines, Genetic Algorithms, Sot Computing and many other alternatives are open 

for investigation as to their appropriateness to handle a given problem. hese methods are valuable when 

tackling complex, demanding problems; yet, they are computationally demanding, they may converge to 

optimal or to suboptimal solutions while their performance is case-dependent. he right choice is possible 

only ater the engineer has deeply studied and understood the nature of the problem at hand and has 

formed a clear view of the type of answer and the accuracy of answer sought. he cost of resorting to 

non-linear approaches has always to be taken into account and justiied: there still exists the possibility 

that the linear method returns a solution whose quality and accuracy are satisfactory!
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